Learning a Robust Relevance Model for Search Using Kernel Methods
نویسندگان
چکیده
This paper points out that many search relevance models in information retrieval, such as the Vector Space Model, BM25 and Language Models for Information Retrieval, can be viewed as a similarity function between pairs of objects of different types, referred to as an S-function. An S-function is specifically defined as the dot product between the images of two objects in a Hilbert space mapped from two different input spaces. One advantage of taking this view is that one can take a unified and principled approach to address the issues with regard to search relevance. The paper then proposes employing a kernel method to learn a robust relevance model as an S-function, which can effectively deal with the term mismatch problem, one of the biggest challenges in search. The kernel method exploits a positive semi-definite kernel referred to as an S-kernel. The paper shows that when using an S-kernel the model learned by the kernel method is guaranteed to be an S-function. The paper then gives more general principles for constructing S-kernels. A specific implementation of the kernel method is proposed using the Ranking SVM techniques and click-through data. The proposed approach is employed to learn a relevance model as an extension of BM25, referred to as Robust BM25. Experimental results on web search and enterprise search data show that Robust BM25 significantly outperforms baseline methods and can successfully tackle the term mismatch problem.
منابع مشابه
Ensemble Kernel Learning Model for Prediction of Time Series Based on the Support Vector Regression and Meta Heuristic Search
In this paper, a method for predicting time series is presented. Time series prediction is a process which predicted future system values based on information obtained from past and present data points. Time series prediction models are widely used in various fields of engineering, economics, etc. The main purpose of using different models for time series prediction is to make the forecast with...
متن کاملRelevance Ranking Using Kernels
This paper is concerned with relevance ranking in search, particularly that using term dependency information. It proposes a novel and unified approach to relevance ranking using the kernel technique in statistical learning. In the approach, the general ranking model is defined as a kernel function of query and document representations. A number of kernel functions are proposed as specific rank...
متن کاملA robust least squares fuzzy regression model based on kernel function
In this paper, a new approach is presented to fit arobust fuzzy regression model based on some fuzzy quantities. Inthis approach, we first introduce a new distance between two fuzzynumbers using the kernel function, and then, based on the leastsquares method, the parameters of fuzzy regression model isestimated. The proposed approach has a suitable performance to<b...
متن کاملBilateral Teleoperation Systems Using Backtracking Search optimization Algorithm Based Iterative Learning Control
This paper deals with the application of Iterative Learning Control (ILC) to further improve the performance of teleoperation systems based on Smith predictor. The goal is to achieve robust stability and optimal transparency for these systems. The proposed control structure make the slave manipulator follow the master in spite of uncertainties in time delay in communication channel and model pa...
متن کاملThe MediaMill TRECVID 2009 Semantic Video Search Engine
In this paper we describe our TRECVID 2009 video retrieval experiments. The MediaMill team participated in three tasks: concept detection, automatic search, and interactive search. Starting point for the MediaMill concept detection approach is our top-performing bag-of-words system of last year, which uses multiple color descriptors, codebooks with soft-assignment, and kernel-based supervised l...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Machine Learning Research
دوره 12 شماره
صفحات -
تاریخ انتشار 2011